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Clusters in an assembly of globally coupled bistable oscillators
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Abstract. We study the dynamics of an assembly of globally coupled bistable elements. We show that
bistability of elements results in some new features of clustering in the assembly when there is global
coupling. We provide conditions for the existence of stable amplitude-phase clusters and splay–phase
states.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Large assemblies of identical or almost identical interact-
ing nonlinear elements play a significant role in under-
standing the dynamical behaviour of many systems which
are studied in various fields of science [1–10]. In a wide
class of such systems an important place is occupied by as-
semblies of globally coupled nonlinear elements. In such as-
semblies each element is coupled with equal strength to all
others. Examples of globally coupled assemblies are oscil-
latory neuronal systems [3,7,8,10,11], arrays of Josephson
junctions [12,13], some laser and electronic systems [14],
etc. The dynamics of assemblies with global coupling is
extremely varied and can be rather complex [15–20]. One
interesting feature of such systems is the possibility of for-
mation of subgroups of elements i.e. clustering [21–28],
with specific properties different for each subgroup. In the
case of weak coupling between elements a useful approx-
imation to study the phenomenon of clustering is the so-
called phase model [29]. This approach is based on the
assumption that the amplitudes of the limit cycles, ex-
isting in each element of the assembly in the absence of
coupling, do not noticeably change with weak enough cou-
pling. Accordingly, amplitude equations are disregarded
and we can focus in studying only phase equations to de-
scribe the dynamics of the assembly and to investigate
phase clustering. But the phase model becomes inapplica-
ble for assemblies with elements possessing bistable prop-
erties like two stable attractors. Bistability is a signifi-
cant property of many nonlinear systems. For example,
the bistable behaviour of neurons is used as a basic in-
gredient for some neural networks [3,7,8]. In the simplest
approximation an individual neuron can be in two states:
the state of the rest and the regime of periodic, limit cycle
oscillations. For assemblies of bistable units we must, si-
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multaneously, consider the equations for both amplitudes
and phases. The bistability of a single element can dras-
tically influence the collective behaviour of the assembly
and lead to effects not observed in arrays of elements with
a single attractor. Here we investigate the dynamics of an
assembly of globally coupled bistable oscillators.

The paper is organized as follows. First, we introduce
the model problem to be studied. In Section 2 we describe
homogeneous oscillations. In section 3 we study in-phase
motions in a gradient system. In our system, stable am-
plitude oscillations are possible. In Section 4 we consider
amplitude-phase clusters. We find that introducing suit-
able parameters, α, γ, phase differences appear between
clusters. In Section 5 we study the so-called “splay-phase”
states. The conditions of their existence and stability are
analytically obtained. In Section 6 we discuss new fea-
tures of the expected irregular behaviour in the assem-
bly of bistable oscillators. Finally, in the Conclusion we
summarize the results obtained and hence we discuss the
salient features of the influence of bistability on the dy-
namics of the system.

We consider an assembly of N globally coupled iden-
tical bistable oscillators evolving in time according to

Ẇj = −Wj

[
f
(
|Wj |

)
− i
(
ω + αg

(
|Wj |

))]
+ (β + iγ)

(
W −Wj

)
, j = 1, 2, . . . , N, (1)

where Wj is a complex variable, f(|W |) = 2a|W |4 −
a|W |2 + 1, g(|W |) = |W |2 − 2|W |4, and

W =
1

N

N∑
k=1

Wk. (2)

The functions f(|W |), g(|W |) and the parameters ω, a, α
characterize the individual dynamics of the element in
the assembly. ω, a have positive values and α ≤ 0. When
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α = 0 the motions of a single oscillator are isochronous,
and when α < 0 they are nonisochronous. For a > 8 the
stable limit cycle and the stable steady state coexist with
basins of attraction separated by an unstable limit cycle.
The parameters β and γ characterize the strength of the
coupling between the oscillators, and have positive values.
This interaction operates only through the mean field W .
We assume that the assembly size, N , is suitably large.
An alternative description of (1) is obtained using “po-
lar” coordinates, zj = Wje

i(γ−ω)t. Then (1) becomes

żj = −zj [h(|zj |)− iαg(|zj |)] + (β + iγ)z̄,

j = 1, 2, . . . , N, (3)

where h(|z|) ≡ f(|z|) + β, z̄ =
1

N

N∑
k=1

zk.

2 Homogeneous oscillations

Homogeneous oscillations of the assembly (1) correspond
to the solutions of the system (3), independent of j. The
system (3) has three homogeneous solutions

zj(t) = r0ei(g(r
0)t+ϕ0), j = 1, 2, . . . , N, (4)

with

r0 =


0,

r(1) ≡
1

2

√
1−

√
1− 8/a, ϕ0 = const.

r(2) ≡
1

2

√
1 +

√
1− 8/a.

Linearizing the system (3), around each solution (4), we
obtain for perturbations, ξj ∈ C, the following equations
for disturbances upon the trivial solution

ξ̇j = −ξj + (β + iγ)

(
1

N

N∑
k=1

ξk − ξj

)
(5)

and for disturbances around the other homogeneous oscil-
lations

ξ̇j = −H(r0) (a+ iα)
(
ξj + ξ∗j

)
+ (β + iγ)

(
1

N

N∑
k=1

ξk − ξj

)
. (6)

Here and below, starred quantities denote complex conju-
gation, and H(r) = r2(4r2 − 1). The matrices associated
with systems (5, 6) are circulant, and their eigenvalues,
which are the Lyapunov exponents of solutions (4), can
be easily found. To do this, the matrices are reduced to
the block-diagonal form [30]. We carried out such analy-
sis and obtained the following results. The trivial solution
zj = 0 has the Lyapunov exponents

λ1 = λ2 = −1, λ2+s = −(β + 1)± iγ,

s = 1, 2, . . . , N − 2 (7)

and the nontrivial solutions have λ1 = 0, λ2 = −2aH(r0)
and (N − 1) pairs of exponents, which are the roots of
equation

λ2 + 2(aH(r0) + β)λ + β2 + γ2 + 2H(r0) (aβ + αγ)=0.
(8)

The analysis of the distribution of eigenvalues in the com-
plex plane shows that the trivial solution of the assembly
is stable, that homogeneous oscillations with amplitudes
r(1) are unstable while those with r(2) are stable in the
region defined by the inequality

β2 + γ2 + 2H(r(2)) (aβ + αγ) > 0. (9)

Hence for some initial conditions all the oscillators of the
assembly (1) can be at rest, and the others may exhibit
homogeneous periodic oscillations.

3 Amplitude clusters

Let us consider the collective dynamics of the assem-
bly (1), consisting of isochronous oscillators, (α = 0), glob-
ally coupled with β(γ = 0) now taken real. For α = γ = 0
the system (3) is gradient as

dzj
dt

= −
∂U

∂z∗j
, (10)

with

U =
1

2

N∑
j=1

{
G
(
|zj |

2
)

+
β

N

N∑
k=1

|zk − zj|
2
}
,

G
(
|z|2
)

= 2|z|2
[
1−

a

2
|z|2 +

2a

3
|z|4
]
.

Consequently, the system (3) has steady states only and
for any initial conditions all trajectories tend to one of
them. Hence amplitudes and phases of stable oscillations
of the assembly (1) correspond to stable fixed points of
(3). The simplest of these stationary points correspond to
homogeneous oscillations.

3.1 Existence of in-phase motions

It follows from (3) that in the phase space of the system
there exists a manifold of in-phase motions S =

{
ϕj =

ϕ0 = const, j = 1, 2, . . . , N
}

. On the manifold S the
equations describing the dynamics of amplitudes have the
form

ṙj = −F (rj) +
β

N

N∑
k=1

(rk − rj) , (11)

where zj = rje
iϕ0

, F (r) = 2ar5 − ar3 + r. The coordi-
nates of the steady states of the system (11) determine
amplitudes of in-phase oscillations of the assembly (1).
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Fig. 1. Geometrical interpretation of conditions (12) and (13).

Let us now find conditions of existence of inhomoge-
neous states of the system (11). We obtain from (11) that
for each i = 1, 2, ..., N − 1 the coordinates of the steady
states obey the following relationship

F (ri+1)− F (ri) = −β(ri+1 − ri). (12)

On the other hand, according to Lagrange’s theorem there
exist ρi ∈ (ri, ri+1) such that

F (ri+1)− F (ri) = F ′(ρi)(ri+1 − ri). (13)

Comparing (12) and (13), we conclude that

F ′(ρi) = −β. (14)

Hence, taking into account the form of F (r), we see that
condition (14) is satisfied in the parameter region delin-
eated by the inequalities

β + 1 < 9a/40, a > 8. (15)

For the parameter values from this region on the curve
F (r) for r ≥ 0 there are two points where the angular
coefficients of the tangents are equal to −β (Fig. 1, lines
L1 and L2). From (13, 14) follows that the coordinates
of the steady states of the system (11) must be abscissas
of the points of intersection of the curve F (r) with the
secant, which is parallel to the tangents L1, L2 (Fig. 1).
Consequently, the coordinates of the steady states form
sets

{
r0
j

}
, j = 1, 2, ..., N , whose elements have either two

or three different digits. As shown below only in-phase
oscillations, corresponding to the stationary points whose
coordinates satisfy the condition F ′(r) + β > 0, can be
stable. Abscissas of the “middle” point in Figure 1 ob-
viously violate this condition. Thus we turn to consider
the steady states corresponding to the “extreme” points
in Figure 1. Thus we look for sets

{
r0
j

}
, consisting of two

different positive numbers, denoted by p0 and q0. Since
the system (11) is symmetric under permutation of the N
indices, one can assume, without loss of generality, that

rj =

{
p0, j = 1, 2, . . . , n,
q0, j = n+ 1, . . . , N.

(16)
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Fig. 2. Graphic solutions of the system (17).

From (11) we obtain the system of equations for p0 and
q0 : 

q0 = p0 +
N

(N − n)β
F (p0),

p0 = q0 +
N

n β
F (q0).

(17)

Note that outside the region defined by (15), i.e. above the
curve K in Figure 3, the system (17) can have only solu-
tions that satisfy the condition p0 = q0 and correspond
to homogeneous oscillations (as shown in Sect. 2). The
largest number of real solutions of the system (17), such
that p0 6= q0, is six (Fig. 2). But since the system (17) is in-
variant under the transformations {n→ N − n, N −n→
n, q0 → p0, p0 → q0} the solutions, satisfying the condi-
tion p0 > q0, coincide with the corresponding solutions
with p0 < q0, which are numbered in a different way.
Therefore, for example, we can restrict consideration to
just three of them with p0 > q0. We show below that sta-
ble inhomogeneous in-phase oscillations have amplitude
distributions

{
r0
j

}
of values pA and qA only, where pA, qA

are the coordinates of the point A in Figure 2. For β � 1,
using regular perturbation theory, one can find that

pA = β
(N − n)

N
r(2) +O(β2),

qA = r(2) − β
n

2Nr(2)
√
a(a− 8)

+O(β2), (18)

where r(2) is the amplitude of one of the homogeneous
solutions, defined in formula (4).

Thus in the assembly described by system (1) there
exist both homogeneous and inhomogeneous in-phase os-
cillations.

3.2 Stability of the inhomogeneous in-phase
oscillations

Let
{
rj = r0

j , ϕj = ϕ0
j

}
be the solution of the sys-

tem (3), providing inhomogeneous in-phase oscillations of
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the assembly. Linearization of the system (3) around this
solution gives the following equations for perturbations,
ξj = rj − r0

j and ηj = ϕj − ϕ0 :
ξ̇j = −αpξj + d

N∑
k=1

ξk, j = 1, 2, . . . , n,

ξ̇j = −αqξj + d

N∑
k=1

ξk, j = n+ 1, . . . , N,

(19)

and

η̇j = −dσ1ηj + d

n∑
i=1

ηi + d
q0

p0

N∑
i=n+1

ηi,

j = 1, 2, . . . , n,

η̇j = −dσ2ηj+d
p0

q0

n∑
i=1

ηi + d

N∑
i=n+1

ηi, j = n+1, . . . , N,

(20)

with

αp ≡ β + F ′(p0), αq ≡ β + F ′(q0),

d ≡
β

N
, σ1 ≡ n+

q0

p0
(N − n), σ2 ≡ N − n+

p0

q0
n.

It follows from (19, 20) that amplitude and phase distur-
bances evolve in an independent way.

Consider first the system (19) describing the evolution
of amplitude perturbations. Let us introduce “difference”
variables

ξi+1 − ξi = ui, i = 1, 2, . . . , n− 1,

ξi+1 − ξi = vi−n, i = n+ 1, . . . , N − 1,

and hence the new variables are governed by the system{
u̇i = −αpui, i = 1, 2, . . . , n− 1,

v̇k = −αqvk, k = 1, 2, . . . , N − n− 1.
(21)

If αp > 0 and αq > 0, in the phase space of (19) there
exists a stable manifold

M =
{
ξ1 = ξ2 = . . . = ξn = u(t),

ξn+1 = ξn+2 = . . . = ξN = v(t)
}
.

On the manifold M the evolution obeys the 2nd order
differential system{

u̇ = (nd− αp)u+ d(N − n)v,

v̇ = dnu+
(
d(N − n)− αq

)
v.

(22)

Consequently, if the manifold M and if the trivial solu-
tion of the system (22) are stable, all perturbations decay,
ξj → 0. This is the case in the parameter region defined
by the inequalities

β+F ′(p0) > 0, β+F ′(q0) > 0, β+F ′(p0)+F ′(q0) > 0,

β

{
n

N
F ′(p0) +

(N − n)

n
F ′(q0)

}
+ F ′(p0)F ′(q0) > 0.

(23)
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Fig. 3. Regions of existence and stability of homogeneous and
inhomogeneous oscillations of the assembly (N = 30). The
region dcl defines the parameter values, for which 2N − 2 in-
homogeneous states are stable. The region d−cl is where the
amplitude-phase clusters become unstable. The line B2 bounds
the region of stability of the inhomogeneous states. Above the
curve K only homogeneous states can exist.

In a similar way one can show that one of the eigenvalues
of (20) vanishes and all others are negative for all possible
values of the parameters β and a.

Thus the inequalities (23) separate the region, wherein
inhomogeneous steady states of system (3) and, conse-
quently, inhomogeneous oscillations of the assembly are
stable. Using (23), it can be shown that all inhomoge-
neous oscillations with amplitude distribution of values
different form pA and qA are unstable while those having
these values can be either stable or unstable.

3.3 Formation of amplitude clusters

From equations (18) it follows that for β � 1, F ′(p0) > 0,
F ′(q0) > 0, which ensures fulfillment of the stability con-
ditions (23) for all n. Thus in this case there are 2N − 2
stable inhomogeneous states of the system (3). Solving,
numerically, the system (17) and inequalities (23) we ob-
tain, that all these solutions exist and are stable not only
for β � 1, but also in some region dcl (Fig. 3). Each of
such steady states has its own set

{
r0
j

}
, j = 1, 2, ..., N ,

of values pA and qA, that determines the amplitudes of
inhomogeneous in-phase oscillations of the assembly (1).
But due to the symmetry of system (3) only in N − 2 of
these states the assembly (1) has genuinely distinct be-
haviour. Here elements form two clusters: n of them have
“high” amplitude pA and (N − n) have “low” amplitude
qA, where n = 1, 2, ..., N − 1.

For example, Figure 4b shows amplitude clusters (solid
circles), which have formed from the initial distribution
marked by open ones in Figure 4a. Note that this prop-
erty of equal amplitude in the clusters in a system with
global coupling is exact, and not approximate as in sys-
tems with diffusive coupling [31]. The stability conditions
of amplitude clusters depend not only on the parameters
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Fig. 4. One of the stable in-phase states (N = 30, a = 18, β =
0.2). (a) Initial state, (b) final distribution of complex ampli-
tudes (14 elements have “low” amplitude and 16 “high” am-
plitude).

of system (3), but also on the values of N and n (to be
precise on their ratio). Therefore, roughly speaking, solu-
tions with different n (for fixed N and a) loose stability for
different values of β. The stability boundary and regions
of existence for amplitude clusters with different n for the
assembly with N = 30 are shown in Figure 5. Numerical
exploration shows that lines of stability and existence are
very close and for each fixed a have a maximum whose
location depends on the value of a. Hence clusters hav-
ing marked predominance of elements with high or low
amplitude loose stability first.

Thus when the parameters change within the region d−cl
from the curve B1 to B2 in Figure 3, amplitude clusters
loose stability one at a time. And when B2 is reached, all
of them become unstable. For the value of the parameters
in the region above B2 only homogeneous oscillations are
stable.

4 Amplitude-phase clusters

Consider now the collective behaviour of the assembly (1),
when all oscillators are nonisochronous (α 6= 0). We take
here the coefficient of coupling between the oscillators
complex (β, γ 6= 0). In this case from the equations for the

0 10 20 30
0

1

2

n

β

Fig. 5. Boundaries of existence (open circles) and stability
(solid circles) of amplitude clusters with different n for N =
30, a = 18.

phases, ϕj
(
zj = rje

iϕj
)
, follows that in-phase motions are

impossible in the system (3).
Let us look for the solution of the system (3) in the

form

rj(t) =

{
p(t), j = 1, 2, . . . , n,

q(t), j = n+ 1, . . . , N
(24)

and

ϕj(t) =

{
ψ1(t), j = 1, 2, . . . , n,

ψ2(t), j = n+ 1, . . . , N.
(25)

From (3) follows the evolution equations for amplitudes,
p(t), q(t), and the phase difference, ψ = ψ2 − ψ1:

ṗ = −Q(p) + q
N − n

N
[β cosψ − γ sinψ],

q̇ = −R(q) + p
n

N
[β cosψ + γ sinψ],

ψ̇ = α [g(q)− g(p)] + γ cosψ

[
np

Nq
−

(N − n)q

Np

]

−β sinψ

[
np

Nq
+

(N − n)q

Np

]
+
N − 2n

N
γ,

(26)

with

Q(p) ≡ p

[
f(p) + β

N − n

N

]
, R(q) ≡ p

[
f(p) + β

N − n

N

]
.

Let us assume that β (26) satisfies the condition:

β <


(a− 8)N

8(N − n)
, n ≤ N/2,

(a− 8)N

8n
, n > N/2.

(27)
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Then the functions Q(p) and R(q) satisfy the conditions:

Q(pi) = 0, R(qi) = 0, i = 0, 1, 2,

Q(p) > 0, if p ∈ (0, p1) and p > p2,

Q(p) < 0, if p ∈ (p1, p2),

R(q) > 0, if q ∈ (0, q1) and q > q2,

R(q) < 0, if q ∈ (q1, q2),

(28)

where

p0 = 0, p1,2 =
1

2

√√√√1∓

√
1−

8

a

(
1 + β

(N − n)

N

)
,

q0 = 0, q1,2 =
1

2

√
1∓

√
1−

8

a

(
1 + β

n

N

)
.

Let us show that there exists an invariant domain in the
phase space of the system (26). Consider the following
region

Ω =
{
p, q : p2 −A ≤ p ≤ p2 +A, 0 ≤ q ≤ B

}
,

where A and B are the parameters satisfying the condi-
tions

0 < A < P2 − p1, 0 < B < p1. (29)

The boundary of the region Ω is a cylindrical surface.
Consider the orientation of the vector field at this surface.

Let us take q > 0. In this case from the system (26)
we obtain

ṗ|p=p2+A ≤ −Q(p2 +A) + q
N − n

N

√
β2 + γ2,

ṗ|p=p2−A ≥ −Q(p2 −A)− q
N − n

N

√
β2 + γ2, (30)

q̇|q=B ≤ −R(B) + p
n

N

√
β2 + γ2.

Let us find the conditions when, for q > 0, the vector
field of (26) at the boundary of Ω is oriented into this
region. It happens, when the parameters A and B satisfy
the conditions (29) and the following inequalities

A ≤ −p2 +
NR(B)

n
√
β2 + γ2

, B ≤ −
NQ(p2 −A)

(N − n)
√
β2 + γ2

. (31)

If the system (31) has a solution, the existence of the re-
gion D in the plane (A, B) is ensured (Fig. 6). Note that
not all parameter values allow solution for the system (31).
Let us mark by dr the set of the parameter values of the
system (26), when there exists the region D. For exam-
ple, this region always exists if the following condition is
fulfilled:

R(qmax) ≥
n

N

√
β2 + γ2 (2p2 − pmax) , (32)

-p
2

0

p
1

p
2

D

p
2
-p

1

B

A

Fig. 6. Graphic solution of the inequalities (31) for N =
30, n = 4, a = 20, β = 1, γ = 0.1.

where

qmax =

√
3

20
−

1

10

√
9

4
−

10

a

(
1 + β

n

N

)
,

pmax =

√√√√ 3

20
+

1

10

√
9

4
−

10

a

(
1 + β

N − n

N

)
,

hence the inequality (32) gives only an approximate loca-
tion for the boundary of the region dr.

Consider the orientation of the vector field at the sur-
face {q = 0}. It follows from the system (26), that for
q = 0 the phase ψ2 can have an arbitrary value. However,
it must satisfy the equation

γ cos(ψ2 − ψ1)− β sin(ψ2 − ψ1) = 0. (33)

Substituting (33) in (26) we obtain that in the plane {q =
0} the vector field obeys the equation

q̇|q=0 = p
n(β2 + γ2)

Nβ
cos(ψ2 − ψ1). (34)

We can determine the phase ψ2 such that

q̇|q=0 > 0. (35)

Thus for the parameter values taken from the region dr
the vector field of (26) is oriented inwards to the region
Ω. A qualitative sketch of the intersection of the region
Ω with the plane {ψ = const} and the orientation of the
vector field of (26) at the boundary of the region are given
in Figure 7. Let us mark by Ω+ the part of the region Ω
between the planes {ψ = 0} and {ψ = π − arctanγ/β}.
The orientation of the vector field on these planes can be
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Fig. 7. Orientation of vector field at the boundary of the region
Ω.

found from (26):

ψ̇|ψ=0 = α [g(q)− g(p)] +
N − 2n

N
γ

+γ

[
np

Nq
−

(N − n)q

Np

]
,

ψ̇|ψ=π−arctanγ/β = α [g(q)− g(p)]

+
N − 2n

N
γ −

2βγ√
β2 + γ2

np

Nq
·

(36)

On the other hand, the trajectories of the system (26)
belonging to the region Ω, satisfy the inequalities

p2 −A0 < p(t) < p2 +A0,
0 < q(t) < B0.

(37)

Using (37), we obtain from (36), that if the parameters of
the system (26) belong the region dψ, given by

|α|Gmax +
|N − 2n|

N
γ −

nβγ√
β2 + γ2

p2 −A0

B0
< 0,

|α|Gmax−
|N − 2n|

N
γ−γ

[
n(p2 −A0)

B0
−

(N − n)B0

p2 −A0

]
<0,

(38)

with

Gmax ≡ g(B0) + max {g(p2 −A0),−g(p2 +A0)}

the vector field is oriented inwards to the regionΩ+. Thus,
all along the surface of the region Ω+ the vector field of
the system (26) points inwards to this region, and hence
Ω+ is the invariant domain.

Due to invariant property of the regionΩ+ in the phase
space of the system there exists at least one trajectory L,
satisfying the condition(

p(t), q(t), ψ(t)
)
∈ Ω+. (39)

It can be shown, that the components p(t), q(t) (the ampli-
tudes of oscillations of the system (3)) satisfy the inequal-
ities (37), and the phase differences satisfy the following
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Fig. 8. Amplitude-phase clusters. Parameter values a = 20,
N = 30 (26 with “low” amplitude and 4 with “high” ampli-
tude) (a) α = −0.1, β = 1, γ = 0.1, (b) α = −10, β = 0.5,
γ = 0.2.

inequality:

0 < ψ2(t)− ψ1(t) < π − arctanγ/β.

Thus, the trajectory L determines the oscillatory be-
haviour of the system (3) in the form (24, 25), i.e. in the
form of amplitude-phase clusters. Such clusters exist for
the values of the parameters from the region {dr

⋂
dψ}.

Numerical integration of the evolution equations (3)
permits verification of the conditions obtained above. The
amplitude-phase clusters exist in a rather “wide” range of
parameter values. Figure 8 shows two typical solutions in
the form of the amplitude-phase clusters. The initial state
is an almost in-phase state with a random distribution
of amplitudes. Integration of the system (3) shows not
only the existence of the amplitude-phase clusters, but
also their stability.

Note, that the existence of the amplitude-phase states
is impossible in assemblies composed of oscillators with a
single attractor (e.g. limit-cycle oscillators).
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5 “Splay-phase” states

The collective state of an assembly when the amplitudes
of oscillations are the same but the phases are different
and such that ϕj(t) = Φj , where Φj are constants, satis-

fying the condition
N∑
j=1

eiΦk = 0, is called a “splay-phase”

state [32,33]. Let us show, that the assembly (1) has stable
“splay-phase” states in another albeit related way.

Taking into account the condition
N∑
j=1

eiΦk = 0, we find

from (3) the following solution:

zj(t) =

{
r(3)ei(g(r

(3))t+Φj), j = 1, 2, . . . , n,

0, j = n+ 1, . . . , N,
(40)

with

r =
1

2

√
1 +

√
1− 8(1 + β)/a and

n∑
j=1

eiΦj = 0.

The solution (40) exists in the region of parameter val-
ues defined by the inequality β < a/8 − 1. Besides, for
system (3) there is a splay-phase state with amplitude

r = r(4), where r(4) ≡ 1
2

√
1−

√
1− 8(1 + β)/a. But, as

shown below, such a state is linearly (locally) unstable
hence we disregard it. Note also that in (40) the index
n is arbitrary and, in particular, can be equal to N . In
the later case, (40) defines a splay-phase state typical of
assemblies of globally coupled limit-cycle oscillators as dis-
cussed in reference [16].

Let us now consider the stability of the splay-phase
states (40). Linearizing the system (3) around the corre-
sponding solution, we obtain for perturbations, ξj ∈ C,
the following system:

ξ̇j =
β + iγ

N

N∑
k=1

ξkei(Φk−Φj)

− (a+ iα)H(r(3))(ξj + ξ∗j ), j = 1, 2, ..., n,

ξ̇j =
β + iγ

N

N∑
k=1

ξkei(Φk−Φj) − (β + 1)ξj ,

j = n+ 1, ..., N.

(41)

To the system (41) we associate a 2N × 2N matrix whose
eigenvalues are the Lyapunov exponents of the solution
(40). Upon transformation of the matrix to the block-
diagonal form follows that all the eigenvalues split in two
groups. The first group contains N −n−4 negative eigen-
values equal to −(β+ 1) and n− 4 zero eigenvalues corre-
sponding to the dimension of the manifold of locked fixed
phases. The second group consists of eight eigenvalues,
two of which are always negative and equal to −(β + 1),
and the rest of them are the roots of the characteristic
equation

P (λ)P ∗(λ) − (a2 + α2)(β2 + γ2)H2(r(3))

×∆2(λ+ β + 1)2 = 0, (42)
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stable splay-phase states
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β

Fig. 9. Stability region of splay-phase states for a = 20, α =
−30.

with

P (λ) = λ3 + λ2(2aH(r(3)) + 1− iγ)

+ λ

{
2a(β + 1)H(r(3))− (β + iγ)

×

[(
2a−

n(a+ iα)

N

)
H(r(3)) +

(β + 1)n

N

]}
−

(β + 1)n

N
(aβ + αγ + i(aγ − αβ))H(r(3)),

∆ =

∣∣∣∣∣ 1

N

N∑
k=1

e2iΦk

∣∣∣∣∣.
Hence, the stability conditions of (40) depend essentially
on the parameter ∆, i.e. on the distribution of phase con-
stants, Φj . For ∆ = 0 the stability boundary for splay-
states of the form (40) is given in Figure 9. For the
parameter values from the region below the line there can
exist stable splay-states of two types. The first type is il-
lustrated in Figures 10a, b and the second in Figures 10c,
d. In the first case (N − n) oscillators are at rest and the
other n are periodically oscillating. When the second type
appears all the oscillators are excited and indeed oscillate.
Note that splay-phase states of the first type occur due to
the bistability of the unit and do not exist in assemblies
of oscillators with a single limit cycle. The solution of the
second type is not related to the bistable properties of the
units as shown in [16,25].

6 Collective chaos

Numerical integration of the system (3) shows that for
some parameter values the collective dynamics of the as-
sembly (1) can be chaotic (there is a positive Lyapunov
exponent). It can be shown that the salient dynamical
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Fig. 10. Two types of splay-phase states for a = 20, α = −30, β = 1, γ = 2, N = 256: (a) initial state, (b) the first type
(39 elements have zero amplitude and 217 high amplitude); (c) initial state, (d) the second type (final distribution for initial
conditions in Fig. 10c).

properties of this regime are the same as for the “ρ-shaped
type” regime in the case of globally-coupled limit cycle
oscillators as discussed in reference [16]. The form of the
ρ-shaped distribution of the oscillators of the assembly (1)
is plotted in Figure 11a. Each oscillator in this regime is
forced by the mean field, which itself is chaotic. The evo-
lution of the order parameter, M = |z̄|, is drawn in Fig-
ure 11b. Individual oscillators move around the ρ-shaped
loop with eventual jumps to the tail part. In the assembly
(1) this regime has some new features. When the strength
of the coupling becomes large enough (Fig. 11a), a num-
ber of oscillators separates from the tail part. These os-
cillators form a cluster (single dot in Fig. 11a) located at
some distance from the ρ-shaped loop. Their motion is pe-
riodic and regular while the dynamics of oscillators in the
ρ-shaped loop is chaotic (Fig. 12).

It also appears that the system (1) possesses the fol-
lowing property of multistability. Depending on the initial
conditions for the same parameter values one of the fol-
lowing regimes can be attained: (i) all the oscillators are

at rest; (ii) the assembly exhibits collective chaos; and (iii)
oscillators form a splay-phase state.

Conclusion

The model studied here is of potential interest to under-
stand the dynamics of large neural oscillatory networks or
lattices [3,7–9]. Such systems are characterized by rather
complex intralattice connections. Our global coupling may
prove valuable to mimick real behavior. Furthermore, the
bistability of units captures an ingredient of the bistabil-
ity of neurons with coexistence of the state of rest and
excited states. We have shown that this property of units
leads to interesting new features in the collective behavior
of the globally coupled network:

(i) Amplitude-phase clusters can form in the system (1).
Then all units or, say, neurons (here mimicked by
bistable oscillators) break into two groups. The first
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Fig. 11. Collective chaos in the assembly for a = 20, α = −30,
β = γ = 1.8: (a) Snapshots of the 256 oscillators (dots) in the
complex plane at two different instants of time, (b) Evolution
of the order parameter M .

group consists of “strongly” excited neurons having
rather “high” oscillation amplitude, hence spiking.
The second group is composed of “weakly” excited
neurons with a “low” oscillation amplitude, hence
subthreshold oscillations. Furthermore, neurons taken
from different groups oscillate with a constant phase
shift (see e.g. [8]).

(ii) The system (1) can operate in a mode such that
part of the neurons exhibits chaotic oscillations while
the other part oscillates regularly, hence regular and
chaotic oscillations form a “linked” state.

(iii) The system (1) can have two types of multistability.
In the first case, collective chaos and regular dynam-
ics (splay-phase states and the trivial state) “com-
pete” with each other. In the second case, the compe-
tition occurs between the amplitude-phase clusters,
splay-phase states and the trivial state. Note that al-
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Re z

Fig. 12. Time evolution of two elements with regular and
chaotic motion within the chaotic attractor for the parameter
values of Figure 11. The real parts of oscillation amplitudes are
shown. The broken line shows the regular motion (element with
j = 1), and the solid line shows the chaotic motion (j = 5).

though a “winner” in this competition is one of the
large number of such splay-phase states, there is a dif-
ference in the behavior of the assembly (1) in the two
cases. In the first case, part of the neurons (here mim-
icked by bistable oscillators) is excited (splay-phase
state) and the other part is at rest. In the second
case, all neurons are either excited or at rest.
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